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Topological Invariants of C° Crystalline Insulators

In this section, we provide more detailed derivations of topological invariants that are

relevant to C° crystalline insulators. Although the following derivations can be found in many other
previous works, 16:26.27.34.37 we still put them here for readers’ convenience.

Z invariant for an effective low-energy Hamiltonian. The lowest(1!) and the highest(6%") band in
the bulk band structure of C° crystalline insulators don’t play any essential roles in the physicsof
chiral edge state. Also, the important band inversion takes place near point. Thus, let us consider

a Hamiltonian that is restricted to the four bands near point. The original 6 by 6 momentum-space
Hamiltonian from the tight-binding model in Fig. 2(a) of the main text is
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Here, |p, d,,)'s are the dipole-like and quadrupole-like states introduced in the main text.
Projecting H (k) onto the subspace spanned by |p, d.)'s and taking the limit of k - I', we obtain
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These Hamiltonians have the structure of Dirac Hamiltonian, whose Chern number calculations
are straightforward
1 0 (trivial), tout < tin
C=C,—-C = E [Sgn(tout - tin) - sgn,B] - {1 (topological), tout > tin
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As discussed in the main text, sgn(t,,: — t;) is translated to sgn(r; — ;) in our metagate-tuned
graphene plasmons, thus yielding a topological(trivial) phase when r; is greater(smaller) than r,.



Topological corner charge. Suppose that a Hamiltonian # of a periodic system respects a
certain discrete symmetry S: [}T S] = 0. Here, a discrete symmetry means that the possible
eigenvalues for S is countable: $|s;) = s;|s;) (i = 1,2,...). Then, since the Hamiltonian commutes
with $, we can always make a simultaneous eigenbasis so that every energy eigenstate of # is
an eigenstate of $. Also, since the Hamiltonian is periodic, we take the Bloch ansatz for the
eigenstates:
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, Where R is the lattice site position, k is a Bloch momentum, n is the band index, m is the
sublattice index, and N is the total number of unit cells. Or, in momentum-space representation:
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Here, H(K) is a square matrix of a dimension equal to the number of sublattice, since we are only
considering a spin-less case. In this notation, |n, k) = [ck1 cgz ck3 .| - o (k). Each of |n, k) is an
eigenstate of $, as we have constructed a simultaneous eigenbasis; however, in general, there is
no guarantee that each of individual Ckm becomes an eigenstate of $. As an illustration, let’s now
come back to a specific example, which is our ¢ crystalline insulator. The entire system carries

C® symmetry. Fork =M = —(0,\/_) however, C’ﬁcMm is not colinear with CMm itself, as the

relative phase gain exp[iM - (R¢o-R — R)] is not constant for all R. For example, this relative phase
gainis 1 for R = (0,0), whereas itis —1 for R = (a, 0). Ry is a rotation matrix with an angle 6.

Still, there exists certain set of k = k;,,,, values that satisfy Sckm = 611(-,m’ and we call them
invariant momenta. If $ is a rotational symmetry, they are called rotational invariant momenta
(RIM). For examples, RIM for § = €% is T'; RIMs for § = ¢2 are I' and K; and RIMs for § = ¢2 are
I and M. Or, if § is a time-reversal symmetry (S = T), the corresponding time-reversal invariant
momenta (TRIM) are I, K and M (here, we consider T for simple spin-less case, where 7 is
conjugation; 72 = I). At these invariant momenta, we can calculate the symmetry eigenvalues s;,
by simply looking at #, (k;,,,) without having to consider how Ckm ’s transform under S. And, when
we examine this vector 7, (k;,,) of a dimension equal to the number of sublattice, S is treated as
if it is acting upon a single unit cell instead upon the entire lattice. Thus, for example, the
rotational operators in our C® crystalline insulator are reduced to

010000 001000 000100
001000 000100 000010
6000100 ,5_[000010,_[000001
000010 00000 1| 100000
000001 100000 010000
100000 010000 001000
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at their respective RIMs.

These handy evaluations of s;’s at invariant momenta provide a convenient way of
classifying topological phases. Suppose that there are two invariant momenta k;,,, and k;,,,,, and
a singly standing band yield symmetry eigenvalues of s and s’ at those momenta. Then, each
distinct number pair (s,s’) is a candidate for topological phases. Or, at least, we know for sure



that the case with s = s" and another with s # s’ are distinct in their band topology. Those two
cases cannot be adiabatically connected, as the latter one has a discontinuity in symmetry
eigenvalues along the line between k;,,,, and k;,,,,, unlike the former one.

In order to discuss topological charges upon a certain filling fraction (in other words, up to
j-th band), we need to consider all the bands below the bandgap of interest. For example, we
define a topological invariant associated with ¢? symmetry as below:

M] = #M, — #1
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Here, #M, is the number of states among {#,,,(M)| m = 1~j} that satisfy ¢%%,,(M) = +1 - #,,(M),
and #I; defined similarly for k = T'. For the chiral-symmetric filling considered in our main text, the
number of bands below bandgap is j = 3. Carrying out the algebra for the Hamiltonian in Eq. S1,
we finally obtain
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A similar calculation can be done for €3 symmetry, [K] = #K, — #[‘1(3); however, both phases yield a
trivial invariant [K] = 0.3* Thus, for the crystalline insulator described by Eq. S1, [M] serves as a

Hontria\éial invariant. For the detailed relation between the corner charge and [M], we simply provide
ere:
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Chiral Symmetry Breaking Due to Abrupt Domain Termination

In this section, we explain why it was necessary to terminate the topological domain with
the trivial counterpart, by giving an example that other types of termination fail to produce the
topological mid-gap corner states. We show that it is not enough to find any structure that shares
the same bandgap position with the topological domain, and that the local chiral symmetry is
severely broken at the termination, thereby losing the topological mid-gap corner state.

Figure S1(a) depicts another trivial insulator that also carries € symmetry. This structure,
however, has a completely opposite Fermi level landscape, compared to the topological domain;

that is, the metagate for this trivial structure has holes right at the effective sublattice site
positions described in Fig. 2(a). Thus, the microscopic details of dipolar and quadrupolar basis
defined in the topological domain are utterly missing in this new trivial structure. Still, as Fig.
S1(b) clearly shows, this structure has a plasmonic bandgap that overlaps with the bandgap of
the topological structure. Then, we imbed the topological domain with a hexagonal shape into this
new trivial structure, as illustrated in Fig. S1(c).

Then, the embedded structure shows an eigenspectrum provided in Fig. S1(d). At a first
glance, this spectrum looks similarly to the results in the main text; however, the corner states
obtained by this practice are different from those in the main text. The topological mid-gap corner
state in the main text showed its dominant and out-of-phase amplitudes at two effective
sublattices that are the second-most close to the corner-most sublattice. On the contrary, this
trivial corner state features an in-phase amplitude at two effective sublattices that are the second-
most close to the corner-most sublattice, and its dominant amplitude comes from the corner-most
sublattice. This mode profile is a signature of a trivial corner state, as reported in a previous
work.3* And, this mode is not guaranteed to be pinned at mid-gap, since there is no symmetry
protection. Thus, this trivial mode reacts sensitively to local perturbations on the hopping
strengths, whereas the topological mode is not perturbed upon the local perturbations on the
hopping strengths

In order to verify this claim that the eigenfrequency of the trivial mode is highly affected by
local perturbations on the hopping strengths, we first establish a tight-binding model that
represents the system described in Figure S1. We introduce an edge perturbation as depicted in
Fig. S2(a), such that the sublattice sites on the edge-most positions (marked as red) are shifted in
their on-site potential and the intracell hopping between those red sites is strengthened by §t;,.
On-site potential A4, is to incorporate the fact that the abrupt termination with the structure ifig.
S1(a) decreases mode volume of an effective sublattice at edges, thereby decreasing the
plasma energy. The change in the intracell hopping 8t;, is to incorporate the fact that, since the
abrupt termination blocks the wave from dispersing towards the trivial domain, the plasma wave
disperses more to the sideways (perpendicular to the edge), thereby increasing the hopping

between the sublattices along the edges. Figure S2(b) shows that the eigenspectrum for A,q4. =
—1.75t and 6t;,, = 0.25t features trivial corner states as in Fig. S1(d). Also, the mode profile of
this tight-binding corner state, as depicted in Fig S2(c), matches well to the mode profile of the
plasmonic corner state shown in Fig. S1(e).

Then, we compare how two different types of corner states—one is trivial, and the other
of topological origin—react to the variation in §t¢;,,. Figure S3 clearly shows that the eigenenergy
of the trivial corner states varies a lot as a function of §t;,,. In other words, this trivial mode is not
spectrally pinned at all. On the contrary, the topological corner state is strictly pinned to zero
energy, regardless of the strength of the edge perturbation. Therefore, it is crucial to respect the
chiral symmetry both in the bulk and at the termination, in order to benefit from chiral-symmetry-
protected zero-energy(mid-gap)-pinning.



Graphene Intrinsic Drude Loss Estimation

This section provides a justification that the ultra-low Drude loss assumed in the main
text, Zy—,, = 20GHz, is realistically attainable at the state-of-art experimental capabilities. A recent
work on cryogenic operation of near-field scanning of graphene plasmons® has revealed that,

below T < 100K, the dominant mechanism for intrinsic plasmonic loss stems from the electron-
phonon scattering in graphene that leads to pseudo-magnetic field (wobbling of Dirac point

momentum). Then, the Drude loss is given as:
1 /haN?\ BR3Er (1 1
= (1+(5) — = | kT
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, Where 8, = 5.0eV is the pseudo-magnetic field coupling constant, u; = 7.6 X 1078g/cm? is the
graphene mass density, v, = 2.2 X 10°cm/s and v, = 1.4 x 10°cm/s are the velocities of the
longitudinal and transversal acoustic phonons in graphene. Assuming v; = 1.1 X 108cm/s for the
Fermi velocity and % = 4THz, we obtain:

(S12)

% = [1.5 X (Ef ineV) x (T inK)] GHz

(S13)

The recent work mentioned above® reported a successful operation of graphene

plasmon detection down to T = 60K. For our metagate geometry, at gating 1, = 1V, the Fermi
level ranges Er = 0.04~0.16eV. Then, according to Eq. S13, the Drude loss in our metagate-
tuned graphene would be % = [3.6~14.4] GHz. Or, if we assume T = 90K as in the main text, we

get % = [5.4~21.6] GHz. It is not clear if this Drude loss estimation would apply locally with

varying Er on graphene; however, even if that is the case, this loss variation is only on the order
of ~10GHz, which is much less than the bandgap sizes considered in the main text. The bulk
bandgap is around 300GHz, and even the edge bandgap in Fig. 5(b) is around 100GHz.
Therefore, we can neglect any non-Hermitian effects from the spatial variation of the loss term.
For this reason, we simply took the average value of Ep~0.15eV over a unit cell, which gave
%~13.5GHZ for T = 60K or %"*ZO.ZGHZ for T = 90K, and %"'ZOGHZ was used for the density of

state calculation in Fig. 5(b) in the main text. Note that we could have assumed even a 35% lower
value.
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Fig. S1. (a) Fermi level landscape for the new trivial structure with ¢ symmetry; the holes in the
metagate are located at the low Fermi energy regions. (b) The corresponding plasmonic band
structure. (c) Embedded structure considered for the demonstration of local chiral symmetry
breaking; the topological domain is imbedded in the trivial structure. (d) Eigenspectrum from a full
electromagnetic frequency domain simulation from COMSOL; the corner, edge, and bulk states
are color-coded as red, blue, and dark green dots, respectively. (e) Field profiles of corner, edge
and bulk states.
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Fig. S2. (a) Tight-binding model setting that corresponds to the system given in Figure S1; we
assign on-site potential A.4,. to the sublattices marked as red, and increase the intra-cell hopping
strength between red sites by 6t;,. (b) An eigenspectrum calculated for t;,, = 0.875¢t, t,,; =
1.125¢t, Agqge = —1.75t, and 6t;, = 0.25t; the corner states are marked as red. (c) The mode
profile of one of the corner states marked in (b).
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Fig. S3. Comparison between trivial and topological corner states. For each case, the strength of
the edge perturbation §t;,, was varied from 0 to 0.5¢t.The topological corner state is strictly pinned
at the mid-gap regardless of the strength of hopping perturbation, whereas the eigenenergy of the
trivial corner state varies a lot as a function of 6t,,.
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